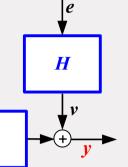


- Introduction background starting from the open-loop case
- Definition(s) of network identifiability
- Two technical results / conditions for evaluating identifiability
- Generic identifiability through path-based graph conditions
- Discussion and Summary

Introduction – classical situation

When are models essentially different (in view of identification)?



In classical PE identification:
Models are indistinguishable

Models are indistinguishable (from data) if their predictor filters are the same:

$$\hat{y}(t|t-1) = \underbrace{H(q)^{-1}G(q)}_{W_u(q)} u(t) + \underbrace{[1 - H(q)^{-1}]}_{W_y(q)} y(t)$$

Introduction – classical situation

predictor:
$$\hat{y}(t|t-1;\theta_1) = \hat{y}(t|t-1;\theta_2) \qquad \text{Two models can not be distinguished from data}$$

$$\longrightarrow \text{data informativity for model set (Ljung, 1999)}$$
 predictor filters:
$$W_y(q,\theta_1) = W_y(q,\theta_2) \\ W_u(q,\theta_1) = W_u(q,\theta_2)$$

$$\longrightarrow \text{trivial for classical (open-loop) case}$$
 models:
$$G(q,\theta_1) = G(q,\theta_2) \\ H(q,\theta_1) = H(q,\theta_2)$$

$$\longrightarrow \text{Identifiability of model structure}$$
 parameters:
$$\theta_1 = \theta_2$$

Introduction – classical situation

predictor:
$$\hat{y}(t|t-1;\theta_1) = \hat{y}(t|t-1;\theta_2)$$
 predictor filters:
$$W_y(q,\theta_1) = W_y(q,\theta_2)$$

$$W_u(q,\theta_1) = W_u(q,\theta_2)$$
 Non-trivial for network case
$$G(q,\theta_1) = G(q,\theta_2)$$
 Reason:
$$H(q,\theta_1) = H(q,\theta_2)$$
 Freedom in network structure • Freedom in presence of excitations and disturbances

 $\theta_1 = \theta_2$

parameters:

Network identifiability problem

The network **model**:

$$w(t) = G(q)w(t) + R(q)r(t) + H(q)e(t)$$

can be transformed with any rational P(q):

$$P(q)w(t) = P(q)\{G(q)w(t) + R(q)r(t) + G(q)e(t)\}$$

to an equivalent model:

$$w(t) = \tilde{G}(q)w(t) + \tilde{R}(q)r(t) + \tilde{H}(q)\tilde{e}(t)$$

 \Longrightarrow Nonuniqueness, unless there are structural constraints on G,R,H.

Network identifiability problem

Network equation in terms of external signals:

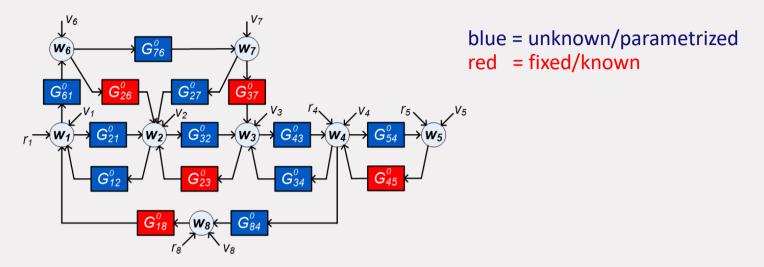
$$w(t) = T_{wr}(q)r(t) + \underbrace{T_{we}(q)e(t)}_{ar{v}(t)}$$

with $T_{wr}=(I-G)^{-1}R$ and $T_{we}=(I-G)^{-1}H$.

On the basis of measured w and r, we can typically identify from data: $T_{wr}, \Phi_{\bar{v}}$ provided that r is persistently exciting of a sufficiently high order.

So the identifiability question becomes:

Is there a unique map from $(T_{wr},\Phi_{ar{v}})$ to (G,R,H)?



- Like in "classical" identification we apply the identifiability concept to a model set
- In the parametrized model set some elements can be fixed (because they are assumed to be known a priori)

Network:
$$w=G^0w+R^0r+H^0e$$
 $cov(e)=\Lambda^0, \;\; {\rm rank}\, {\it p}$ ${\rm dim}(\it r)={\it K}$

The network is defined by: (G^0,R^0,H^0,Λ^0) a network model is denoted by: $M=(G,R,H,\Lambda)$ and a **network model set** by:

$$\mathcal{M} = \{M(\theta) = (G(\theta), R(\theta), H(\theta), \Lambda(\theta)), \theta \in \Theta\}$$

represents **prior knowledge** on the network models:

- topology
- disturbance correlation
- known (non-parametrized) modules
- external excitation signals available

Definition Network identifiability^[1]

For a network model set \mathcal{M} , consider a model $M(heta_0) \in \mathcal{M}$ and the implication

$$egin{aligned} T_{wr}(q, heta_0) &= T_{wr}(q, heta_1) \ \Phi_{ar{v}}(\omega, heta_0) &= \Phi_{ar{v}}(\omega, heta_1) \end{aligned} iggraphi \left\{egin{aligned} M(heta_0) &= M(heta_1), \end{aligned}
ight. \ ext{for all } M(heta_1) \in \mathcal{M} \end{aligned}$$

Then \mathcal{M} is

- ullet globally identifiable from (w,r) at $M(heta_0)$ if the implication holds for $M(heta_0)$;
- ullet globally identifiable from (w,r) if it holds for all $M(heta_0)\in \mathcal{M}$;
- generically identifiable [2] from (w,r) if it holds for almost all $M(heta_0) \in \mathcal{M}$;

^[1] Weerts et al., Automatica, March 2018;

The pair of objects $(T_{wr},\Phi_{ar v})$ plays a central role It would be attractive (for analysis) to consider the pair (T_{wr},T_{we})

Under which conditions does $\Phi_{ar{v}}=(I-G)^{-1}H\Lambda H^*(I-G)^{-*}$ provide a unique $T_{we}=(I-G)^{-1}H$?

e.g. if $(I-G)^{-1}H$ is monic then spectral factorization of $\Phi_{ar v}$ provides a unique T_{we}

Proposition

If 1. The modules in $G(\theta)$ are strictly proper, or

2. No algebraic loops in G(heta) and

$$H^\infty(\theta)\Lambda(\theta)H^\infty(\theta)^T$$
 is diagonal, with $H^\infty(\theta):=\lim_{z o\infty}H(z,\theta)$

Then $\{T_{wr}, \Phi_{\bar{v}}\} \Leftrightarrow \{T_{wr}, T_{we}, \Lambda\}$

Explanation

No algebraic loops in $G(\theta) \Longrightarrow$

By row and column permutations, $G^\infty(heta)$ can be turned into an upper triangular matrix

Then $(I-G^{\infty})^{-1}$ has ones on the diagonal \Longrightarrow

With
$$\Phi^\infty_{ar v}=(I-G^\infty)^{-1}\underbrace{H^\infty\Lambda(H^\infty)^T}_{ ext{diagonal}}(I-G^\infty)^{-T}$$
 and H monic,

This fixes Λ when given $\Phi^\infty_{ar v}$ and removes all scaling freedom in the spectral factorization on $\Phi_{ar v}$

If the conditions of the proposition are satisfied, then the implication in the identifiability definition can be turned into:

$$\left. egin{aligned} T_{wr}(q, heta_1) &= T_{wr}(q, heta_0) \ T_{we}(q, heta_1) &= T_{we}(q, heta_0) \ \Lambda(heta_1) &= \Lambda(heta_0) \end{aligned}
ight.
ight. egin{aligned} \Longrightarrow M(heta_1) &= M(heta_0) \end{aligned}$$

or equivalently:

$$\left. \begin{array}{l} T_{wr}(q,\theta_1) = T_{wr}(q,\theta_0) \\ T_{we}(q,\theta_1) = T_{we}(q,\theta_0) \end{array} \right\} \Longrightarrow \left(G(\theta_1), R(\theta_1), H(\theta_1) \right) = \left(G(\theta_0), R(\theta_0), H(\theta_0) \right)$$

Network identifiability of ${\mathcal M}$ from (w,r) is determined by the implication

$$\left. \begin{array}{l} T_{wr}(q,\theta_1) = T_{wr}(q,\theta_0) \\ T_{we}(q,\theta_1) = T_{we}(q,\theta_0) \end{array} \right\} \Longrightarrow \left(G(\theta_1), R(\theta_1), H(\theta_1) \right) = \left(G(\theta_0), R(\theta_0), H(\theta_0) \right) \\ \text{for all } M(\theta_1) \in \mathcal{M} \end{array}$$

- Network identifiability is a property of a parametrized model set
- It is not dependent on any identification method
- It focusses on uniquenes of network models, rather than of parameters

Different results for network identifiability

- (Conservative) result that is independent of the structure in $G(\theta)$
- More technical result that builds on the structure in $G(\theta)$
- Path-based result on the network graph for generic identifiability

First (conservative) network identifiability result

Denote
$$U(heta):=egin{bmatrix} R(heta) & H(heta) \end{bmatrix}$$
 and $T_{wu}=egin{bmatrix} T_{we} \end{bmatrix}$ Then $T_{wu}=(I-G(heta))^{-1}U(heta)$ and $(I-G(heta))T_{wu}=U(heta)$

Prime identifiability question:

Do $G(\theta), U(\theta)$ uniquely follow from T_{wu} ?

 $U(q, heta) \in \mathbb{R}(q)^{L imes (K+p)}$ where K+p is the number of external r+e signals.

First (conservative) network identifiability result

Sufficient condition for network identifiability^{[1],[2]} – full excitation case

Consider model set \mathcal{M} , and let $U(q, \theta)$ be full row rank $\forall \theta$.

Then $\mathcal M$ is globally network identifiable from (r,w) if there exists a nonsingular and parameter-independent matrix $Q(q) \in \mathbb R^{(K+p) imes (K+p)}$ such that

$$U(q, heta)Q(q) = egin{bmatrix} D(q, heta) & F(q, heta) \end{bmatrix}$$

with $D(q, \theta)$ diagonal and full rank for all θ .

- Rank condition on $U(q,\theta)$ implies that $K+p\geq L$, i.e. there are at least as many external signals as there are nodes (full excitation)
- The resulting condition is independent of the structure in $G(q, \theta)$.

^[2] Weerts et al, Automatica, March 2018.;

Reasoning

$$(I - G(\theta))T_{wu}Q = U(\theta)Q$$

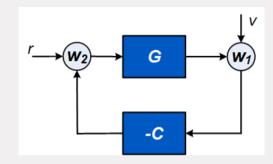
$$(I-G(heta))T_{wu}Q=egin{bmatrix} D(heta) & F(heta) \end{bmatrix}$$

With $T_{wu}Q=egin{bmatrix}A&B\end{bmatrix}$ and A full rank, it follows that

$$D(\theta)^{-1}(I - G(\theta))A = I$$
$$(I - G(\theta))B = F(\theta)$$

Since $D(\theta)$ is diagonal and $I-G(\theta)$ is hollow, uniqueness of $D(\theta)$ and $G(\theta)$ follows. Then also $F(\theta)$ is unique.

Example 1



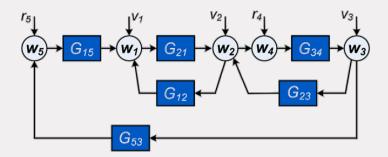
Parametrized model set \mathcal{M} with

$$G(heta) = egin{bmatrix} 0 & G(heta) \ -C(heta) & 0 \end{bmatrix}, \ \ R(heta) = egin{bmatrix} 0 \ 1 \end{bmatrix}, \ \ H(heta) = egin{bmatrix} H(heta) \ 0 \end{bmatrix}$$

$$U(heta) = egin{bmatrix} 0 & H(heta) \ 1 & 0 \end{bmatrix}$$
 can be made diagonal by elementary column operations

 $\Longrightarrow \mathcal{M}$ is globally network identifiable.

Example 2



Consider a model set \mathcal{M} where v_1 and v_2 are allowed to be correlated:

$$\mathcal{M}$$
 with $H(heta) = egin{bmatrix} H_{11}(heta) & H_{12}(heta) & 0 \ H_{21}(heta) & H_{22}(heta) & 0 \ 0 & 0 & H_{33}(heta) \ 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}, \ R = egin{bmatrix} 0 & 0 \ 0 & 0 \ 1 & 0 \ 0 & 1 \end{bmatrix}$

There is enough excitation, but $oldsymbol{U}$ can not be transformed to a diagonal matrix.

 \Longrightarrow No conclusion that holds for any choice of $G(\theta)$

Interpretation

Interpretation of result:

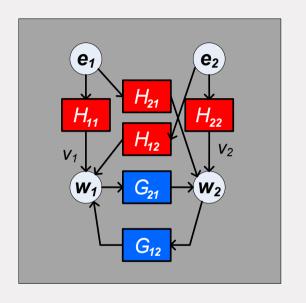
Diagonalizability of $m{U}(m{ heta})$ is implied by: having independent external signals at every node

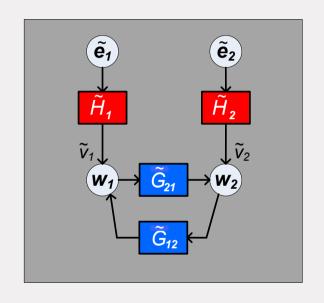
Consequence:

Given data from any LTI dynamic network, there always exists a representing model with diagonal $oldsymbol{H}$

But this does not necessarily represent the structured network that has generated the data

Dynamic network setup - nonuniqueness





Node signals $w_1(t), w_2(t)$ being invariant

Second network identifiability result

Towards a more general result that takes account of the structure of $G(\theta)$:

$$(I - G(\theta))T_{wu} = U(\theta)$$

Do $G(\theta), U(\theta)$ uniquely follow from T_{wu} ?

Consider row j of this equation.

Reorder the columns of (I-G(heta)) and U(heta) such that

$$egin{bmatrix} \left[G_1(oldsymbol{ heta}) & G_2
ight]_{j\star} PT_{wu} = \left[U_1 & U_2(oldsymbol{ heta})
ight]_{j\star} Q & P,Q ext{ permutation matrices} \end{cases}$$

Then

$$egin{bmatrix} \left[G_1(oldsymbol{ heta}) & G_2
ight]_{j\star} \left[egin{matrix} A & B \ C & D \end{smallmatrix}
ight] = \left[U_1 & U_2(oldsymbol{ heta})
ight]_{j\star} & ext{with } \left[egin{matrix} A & B \ C & D \end{smallmatrix}
ight] = PT_{wu}Q^{-1}$$

 $\Longrightarrow G_1(\theta)_{i\star}, U_2(\theta)_{i\star}$ are uniquely determined if A has full row rank.

Second network identifiability result

Sufficient condition for network identifiability^[1] – general case

Consider model set \mathcal{M} , and define for each $j \in [1, L]$:

 $\check{T}_j :=$ the transfer function from

- ullet all external signals (r,e) that do not enter w_j through a parametrized module, to
- all node signals w that map to w_i through a parametrized module.

Then ${\mathcal M}$ is globally network identifiable from (r,w) if for all $j\in [1,L]$:

 \breve{T}_{j} is full row rank for all $\theta \in \Theta$.

The result allows for K+p < L and distinguishes between parametrized and non-parametrized (fixed) modules in \mathcal{M} .

Second network identifiability result

An immediate consequence of the condition is that

$$\sharp$$
 parametrized entries in $\begin{bmatrix} G(heta) & R(heta) & H(heta) \end{bmatrix}_{i\star} \leq K+p$

Proof:

Follows directly from full row rank condition on \check{T}_j :

$$\sharp$$
 param $G(heta)_{j\star} \leq K + p - \sharp$ param $[R(heta)\,H(heta)]_{j\star}$

Second network identifiability result – using *G*-structure

The condition becomes also necessary if we add some conditions on \mathcal{M} :

- ullet All parametrized entries in ${\mathcal M}$ are parametrized independently, and
- ullet Each parametrized entry in ${\mathcal M}$ is not limited in order, and
- Regularity condition on the fixed/non-parametrized modules

Example 5-node network (continued)

If we restrict the structure of $G(\theta)$:

$$G(heta) = egin{bmatrix} 0 & G_{12}(heta) & 0 & 0 & G_{15}(heta) \ G_{21}(heta) & 0 & G_{23}(heta) & 0 & 0 \ 0 & 0 & G_{34}(heta) & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & G_{53}(heta) & 0 & 0 \end{bmatrix} \hspace{1cm} [H \ R] = egin{bmatrix} H_{11}(heta) & H_{12}(heta) & 0 & 0 & 0 \ H_{21}(heta) & H_{22}(heta) & 0 & 0 & 0 \ 0 & 0 & H_{3}(heta) & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \end{bmatrix} ,$$

$$[H \ R] = egin{bmatrix} H_{11}(heta) & H_{12}(heta) & 0 & 0 & 0 \ H_{21}(heta) & H_{22}(heta) & 0 & 0 & 0 \ 0 & 0 & H_{3}(heta) & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

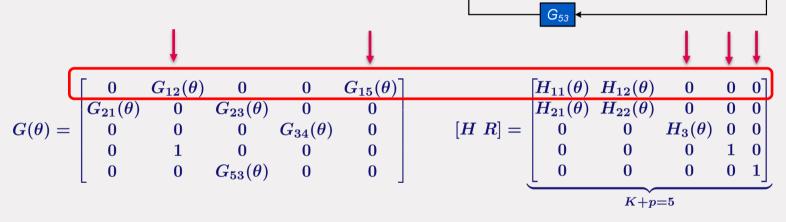
First check:

Number of parametrized entries in each row < K + p = 5

Example 5-node network (continued)

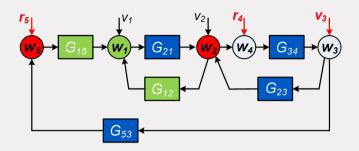
Rank condition:

evaluation of $reve{T}_j$ for j=1:



$$reve{T_1}: egin{bmatrix} v_3 \ r_4 \ r_5 \end{bmatrix}
ightarrow egin{bmatrix} w_2 \ w_5 \end{bmatrix} \,\,$$
 has to have full row rank $orall heta \in \Theta$

Example 5-node network (continued)



Issues:

- Such a rank test is not easy to apply
- ullet and needs to be done for every $j=1,\cdots L$

Generic identifiability

Generic rank and vertex disjoint paths^{[1],[2],[3]}

The **generic rank** of a transfer function matrix between

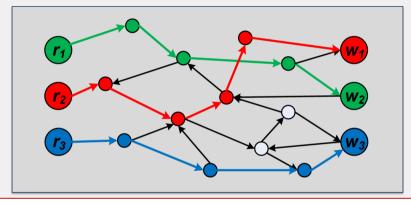
inputs $oldsymbol{u}$ and nodes $oldsymbol{w}$

is equal to the maximum number of **vertex disjoint paths** between the sets of inputs and outputs.

A path-based check on the topology of the network model set can decide whether the conditions for identifiability are satisfied generically.

Generic rank

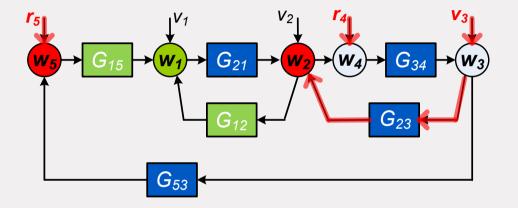
The **generic rank** of a transfer function can be evaluated by graph-based conditions



Generic rank = number of vertex-disjoint paths

There are graph algorithms for calculating this, based on the topology of the network No numerical evaluation based on dynamic systems coefficients.

Verifying the rank condition for w_1 :

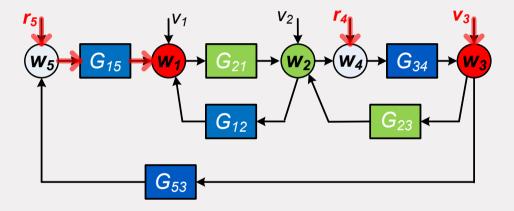


2 vertex-disjoint paths → full row rank 2

Full row rank of

$$egin{bmatrix} v_3 \ r_4 \ r_5 \end{bmatrix}
ightarrow egin{bmatrix} w_2 \ w_5 \end{bmatrix}$$

Verifying the rank condition for w_2 :

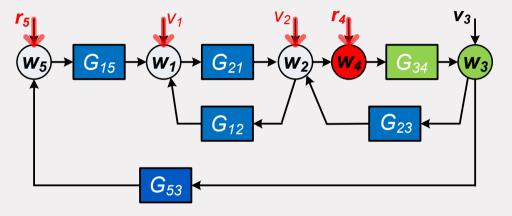


2 vertex-disjoint paths → full row rank 2

Full row rank of

$$egin{bmatrix} v_3 \ r_4 \ r_5 \end{bmatrix}
ightarrow egin{bmatrix} w_1 \ w_3 \end{bmatrix}$$

Verifying the rank condition for w_3 :

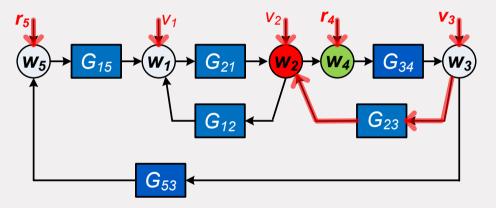


Full row rank of

$$egin{bmatrix} v_1 \ v_2 \ r_4 \ r_5 \end{bmatrix}
ightarrow egin{bmatrix} w_4 \ \end{bmatrix}$$

1 vertex-disjoint path → full row rank 1

Verifying the rank condition for w_4 :

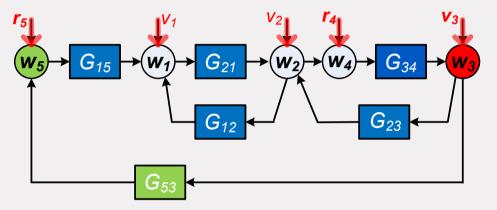


Full row rank of

$$egin{bmatrix} v_1 \ v_2 \ r_3 \ r_4 \ r_5 \end{bmatrix}
ightarrow egin{bmatrix} w_2 \ w_2 \end{bmatrix}$$

1 vertex-disjoint paths → full row rank 1

Verifying the rank condition for w_5 :



Full row rank of

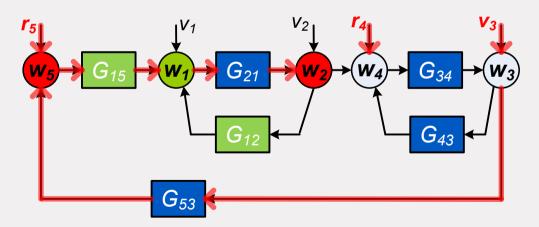
$$egin{bmatrix} v_1 \ v_2 \ r_3 \ r_4 \ r_5 \end{bmatrix}
ightarrow egin{bmatrix} w_3 \ w_3 \end{bmatrix}$$

1 vertex-disjoint paths → full row rank 1

Conclusion 5-node example

The structured model set is generically identifiable

If the feedback connection $w_3 o w_2$ were to be changed to $w_3 o w_4$, then lack of identifiability occurs for the situation j=1



Generic identifiability

Result provides an **analysis tool**, but is less suited for the **synthesis** question:

Given a parametrized network model set:

Where to add external excitation signals to reach generic network identifiability of the full network?

Problem is the "merging" of the results for all $j=1,\cdots L$

Identifiability concept

We started with three different network identifiability concepts^[1]:

- (a) Global identifiability at $M(heta_0)$
- (b) Global identifiability
- (c) Generic identifiability

In an identification setting, we do not know the system, so concept (a) is less relevant;

With concepts (b) and (c), identifiability is a verifiable property of a model set, rather than an assumption on the underlying system.

Discussion identifiability

Identifiability of a network model property

 Rather than focusing on the full network model, a model property can be taken as object for identifiability

$$T(q, \theta_0) = T(q, \theta_1) \Longrightarrow f(M(\theta_0)) = f(M(\theta_1))$$

as e.g. one particular module:

$$f(M(\theta)) = G_{ji}(\theta)$$

This will be addressed separately in single module identifiability

Summary identifiability of full network

Identifiability of network model sets is determined by

- Topology of parametrized modules in model set
- Presence and location of external signals, and
- Presence and correlation structure of disturbances
- Two different concepts: global (with algebraic conditions) and generic (with path-based conditions)
- ullet Presented results: all node signals $oldsymbol{w}$ assumed to be measurable
- ullet Fully applicable to the situation p < L (reduced-rank noise)
- Sufficient conditions for different cases: full excitation case and general case (dependent on topology of G(heta))
- Results not yet suited for synthesis

